una función (f) es una relación entre un conjunto dado X (llamado dominio) y otro conjunto de elementos Y(llamado codominio) de forma que a cada elemento x del dominio le corresponde un único elemento f(x) del codominio (los que forman el recorrido, también llamado rango o ámbito).
En lenguaje cotidiano o más simple, diremos que las funciones matemáticas equivalen al proceso lógico común que se expresa como “depende de”.
Las funciones matemáticas pueden referirse a situaciones cotidianas, tales como: el costo de una llamada telefónica que depende de su duración, o el costo de enviar una encomienda que depende de su peso.
A modo de ejemplo, ¿cuál sería la regla que relaciona los números de la derecha con los de la izquierda en la siguiente lista?:
1 --------> 1
2 --------> 4
3 --------> 9
4 --------> 16
Los números de la derecha son los cuadrados de los de la izquierda.
La regla es entonces "elevar al cuadrado":
1 --------> 1
2 --------> 4
3 --------> 9
4 --------> 16
x --------> x2.
Para referirse a esta regla podemos usar un nombre, que por lo general es la letra f (de función). Entonces, f es la regla "elevar al cuadrado el número".
Usualmente se emplean dos notaciones:
x --------> x2 o f(x) = x2 .
Así, f(3) significa aplicar la regla f a 3. Al hacerlo resulta 32 = 9.
Entonces f(3) = 9. De igual modo f(2) = 4, f(4) = 16, f(a) = a2, etc.
Por otra parte en la pagina Vitutor explica cuales son los tipos de funciones:
Clasificación de funciones
Funciones algebraicas
En las funciones algebraicas las operaciones que hay que efectuar
con la variable independiente son: la adición, sustracción, multiplicación,
división, potenciación y radicación.
Las funciones algebraicas pueden ser:
Funciones explícitas
Si se pueden obtener las imágenes de x por simple sustitución.
f(x) = 5x − 2
Funciones implícitas
Si no se pueden obtener las imágenes de x por simple sustitución,
que es preciso efectuar operaciones.
5x − y − 2 = 0
Funciones polinómicas
Son las funciones que vienen definidas por un polinomio.
f(x) = a0 + a1x + a2x² + a2x³ +··· + anxn
Su dominio es , es decir, cualquier número real tiene imagen.
Funciones constantes
El criterio viene dado por un número real.
f(x)= k
La gráfica es una recta horizontal paralela a al eje de abscisas.
Funciones polinómica de primer grado
f(x) = mx +n
Su gráfica es una recta oblicua, que queda definida por dos puntos
de la función.
Funciones cuadráticas
f(x) = ax² + bx +c
Son funciones polinómicas es de segundo grado, siendo su gráfica
una parábola.
Funciones a trozos
Son funciones definidas por distintos criterios, según los
intervalos que se consideren.
Funciones racionales
El criterio viene dado por un cociente entre polinomios:
El dominio lo forman todos los números reales excepto los valores de x
que anulan el denominador.
Funciones radicales
El criterio viene dado por la variable x bajo el signo radical.
El dominio de una función irracional de índice impar es R.
El dominio de una función irracional de índice par está formado por todos
los valores que hacen que el radicando sea mayor o igual que cero.
Funciones trascendentes
La variable independiente figura como exponente, o como índice
de la raíz, o se halla afectada del signo logaritmo o de cualquiera de
los signos que emplea la trigonometría.
Función exponencial
Sea a un número real positivo. La función que a cada número
real x le hace corresponder la potencia ax se llama función exponencial
de base a y exponente x.
Funciones logarítmicas
La función logarítmica en base a es la función inversa de la exponencial
en base a.
Funciones trigonométricas
Función seno
f(x) = sen x
Función coseno
f(x) = cos x
Función tangente
f(x) = tg x
Función cosecante
f(x) = cosec x
Función secante
f(x) = sec x
Función cotangente
f(x) = cotg x
Toda la Información publicada ha sido una recopilación de información totalmente verificable y con base, nombrándose a los autores de dicha información.